PTP epsilon / DyLight 488 / 2D10
Product Details
Description | IgG purified - - | |
---|---|---|
Conjugate | DyLight 488 | |
Clone | 2D10 | |
Target Species | Human | |
Applications | ICC | |
Supplier | ||
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About PTP epsilon
The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Several alternatively spliced transcript variants of this gene have been reported, at least two of which encode a receptor-type PTP that possesses a short extracellular domain, a single transmembrane region, and two tandem intracytoplasmic catalytic domains; another one encodes a PTP that contains a distinct hydrophilic N-terminus, and thus represents a nonreceptor-type isoform of this PTP. Studies of the similar gene in mice suggested the regulatory roles of this PTP in RAS related signal transduction pathways, cytokine-induced SATA signaling, as well as the activation of voltage-gated K+ channels. [provided by RefSeq, Oct 2015]
The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Several alternatively spliced transcript variants of this gene have been reported, at least two of which encode a receptor-type PTP that possesses a short extracellular domain, a single transmembrane region, and two tandem intracytoplasmic catalytic domains; another one encodes a PTP that contains a distinct hydrophilic N-terminus, and thus represents a nonreceptor-type isoform of this PTP. Studies of the similar gene in mice suggested the regulatory roles of this PTP in RAS related signal transduction pathways, cytokine-induced SATA signaling, as well as the activation of voltage-gated K+ channels. [provided by RefSeq, Oct 2015]
About DyLight 488
DyLight™ 488 has an excitation peak at 493 nm and an emission peak at 518 nm and is spectrally similar to Alexa Fluor™ 488, fluorescein and FITC. DyLight™ 488 is most commonly used in flow cytometery, and fluorescence microscopy applications.
DyLight™ 488 has an excitation peak at 493 nm and an emission peak at 518 nm and is spectrally similar to Alexa Fluor™ 488, fluorescein and FITC. DyLight™ 488 is most commonly used in flow cytometery, and fluorescence microscopy applications.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
243 PTP epsilon antibodies from over 15 suppliers available with over 32 conjugates.
Compare