MVP Monoclonal / Janelia Fluor 549 / 1032
Product Details
Description | Recognizes a protein of 104kDa-110kDa, characterized as major vault protein (MVP). Vaults are large ribonucleoprotein particles (RNPs) present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species. The MVP accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug. Treatment of cells with estradiol increases the amount of MVP in nuclear extract. The hormone-dependent interaction of vaults with ER is prevented in vitro by sodium molybdate. Antibodies to estrogen, progesterone and glucocorticoid receptors are able to co-immunoprecipitate the MVP. MVP is overexpressed in many neoplastic tissues and cell lines. Expression of MVP predicts a poor response to chemotherapy. | |
---|---|---|
Conjugate | Janelia Fluor 549 | |
Clone | 1032 | |
Target Species | Human | |
Applications | FC, IF, IHC-P, IHC | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About MVP
This gene encodes the major component of the vault complex. Vaults are multi-subunit ribonucleoprotein structures that may be involved in nucleo-cytoplasmic transport. The encoded protein may play a role in multiple cellular processes by regulating the MAP kinase, JAK/STAT and phosphoinositide 3-kinase/Akt signaling pathways. The encoded protein also plays a role in multidrug resistance, and expression of this gene may be a prognostic marker for several types of cancer. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2012]
This gene encodes the major component of the vault complex. Vaults are multi-subunit ribonucleoprotein structures that may be involved in nucleo-cytoplasmic transport. The encoded protein may play a role in multiple cellular processes by regulating the MAP kinase, JAK/STAT and phosphoinositide 3-kinase/Akt signaling pathways. The encoded protein also plays a role in multidrug resistance, and expression of this gene may be a prognostic marker for several types of cancer. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2012]
About Janelia Fluor 549
Janelia Fluor® 549 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 549 has an excitation peak at 549 nm and an emission peak at 571 nm.
Janelia Fluor® 549 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 549 has an excitation peak at 549 nm and an emission peak at 571 nm.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
456 MVP antibodies from over 25 suppliers available with over 46 conjugates.