CD105 Monoclonal / Janelia Fluor 646 / MEM-229
Product Details
Description | This antibody (clone MEM-229) recognizes CD105 (Endoglin), a 180 kDa type I integral membrane homodimer glycoprotein expressed on vascular endothelial cells (small and large vessels), activated monocytes and tissue macrophages, stromal cells of certain tissues including bone marrow, pre-B lymphocytes in fetal marrow and erythroid precursors in fetal and adult bone marrow; it is also present on syncytiotrophoblast on placenta throughout pregnancy. | |
---|---|---|
Conjugate | Janelia Fluor 646 | |
Clone | MEM-229 | |
Target Species | Canine (Negative), Equine (Negative), Human, Porcine | |
Applications | FC, ICC, IF, IHC-Fr, IHC | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About CD105
This gene encodes a homodimeric transmembrane protein which is a major glycoprotein of the vascular endothelium. This protein is a component of the transforming growth factor beta receptor complex and it binds to the beta1 and beta3 peptides with high affinity. Mutations in this gene cause hereditary hemorrhagic telangiectasia, also known as Osler-Rendu-Weber syndrome 1, an autosomal dominant multisystemic vascular dysplasia. This gene may also be involved in preeclampsia and several types of cancer. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2013]
This gene encodes a homodimeric transmembrane protein which is a major glycoprotein of the vascular endothelium. This protein is a component of the transforming growth factor beta receptor complex and it binds to the beta1 and beta3 peptides with high affinity. Mutations in this gene cause hereditary hemorrhagic telangiectasia, also known as Osler-Rendu-Weber syndrome 1, an autosomal dominant multisystemic vascular dysplasia. This gene may also be involved in preeclampsia and several types of cancer. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2013]
About Janelia Fluor 646
Janelia Fluor® 646 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 646 has an excitation peak at 646 nm and an emission peak at 664 nm.
Janelia Fluor® 646 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 646 has an excitation peak at 646 nm and an emission peak at 664 nm.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
1814 CD105 antibodies from over 43 suppliers available with over 130 conjugates.