HLA-C Monoclonal / Janelia Fluor 549 / DT-9

Product Details
Description Mouse HLA C antibody [Janelia Fluor 549] reacts with Human
Conjugate Janelia Fluor 549
Clone DT-9
Target Species Human
Applications FC
Supplier Novus Biologicals
Catalog # Sign in to view product details, citations, and spectra
Size
Price
Antigen
Host
Isotype
About HLA-C
HLA-C belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from endoplasmic reticulum lumen. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domain, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. About 6000 HLA-C alleles have been described. The HLA system plays an important role in the occurrence and outcome of infectious diseases, including those caused by the malaria parasite, the human immunodeficiency virus (HIV), and the severe acute respiratory syndrome coronavirus (SARS-CoV). The structural spike and the nucleocapsid proteins of the novel coronavirus SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19), are reported to contain multiple Class I epitopes with predicted HLA restrictions. Individual HLA genetic variation may help explain different immune responses to a virus across a population.[provided by RefSeq, Aug 2020]
About Janelia Fluor 549
Janelia Fluor® 549 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 549 has an excitation peak at 549 nm and an emission peak at 571 nm.
Experiment Design Tools
Panel Builders

Looking to design a Microscopy or Flow Cytometry experiment?

Validation References
Additional
Sources
Reviews & Ratings
Looking for more options?

238 HLA-C antibodies from over 17 suppliers available with over 57 conjugates.

Supplier Page
 Compare