CD137L Monoclonal / Alexa Fluor 750 / 203942

Product Details
Description Mouse 4-1BB Ligand/TNFSF9 Alexa Fluor 750-conjugated Antibody
Conjugate Alexa Fluor 750
Clone 203942
Target Species Mouse
Applications FC
Supplier R&D Systems
Catalog # Sign in to view product details, citations, and spectra
Size
Price
Antigen
Host
Isotype
About CD137L
The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This transmembrane cytokine is a bidirectional signal transducer that acts as a ligand for TNFRSF9/4-1BB, which is a costimulatory receptor molecule in T lymphocytes. This cytokine and its receptor are involved in the antigen presentation process and in the generation of cytotoxic T cells. The receptor TNFRSF9/4-1BB is absent from resting T lymphocytes but rapidly expressed upon antigenic stimulation. The ligand encoded by this gene, TNFSF9/4-1BBL, has been shown to reactivate anergic T lymphocytes in addition to promoting T lymphocyte proliferation. This cytokine has also been shown to be required for the optimal CD8 responses in CD8 T cells. This cytokine is expressed in carcinoma cell lines, and is thought to be involved in T cell-tumor cell interaction.[provided by RefSeq, Oct 2008]
About Alexa Fluor 750
Alexa Fluor™ 750 (AF750, Alexa 750) has an excitation peak at 749 nm and an emission peak at 775 nm, and is spetrally similar to Cy®7 (GE Healthcare), APC-Fire™ 750 (BioLegend), CF®®750 (Biotium), DyLight™ 750 (ThermoFisher Scientific), iFluor® 750 (ATT Bioquest) and iFluor® 790 (ATT Bioquest). Alexa 750 is often used as a tandem fluorophore in flow cytometry or used on its own in fluorescence microscopy, in-vivo fluorescence microscopy or super-resolution microscopy applications.
Experiment Design Tools
Panel Builders

Looking to design a Microscopy or Flow Cytometry experiment?

Validation References
Additional
Sources
Reviews & Ratings
Looking for more options?

659 CD137L antibodies from over 30 suppliers available with over 66 conjugates.

Supplier Page
 Compare