IDH1 / DyLight 755 / IDH1/1152

Product Details
Description It recognizes a 45kDa protein, which is identified as isocitrate dehydrogenase (IDH1). It belongs to the isocitrate and isopropylmalate dehydrogenases family. IDH1 catalyzes the third step of the citric acid cycle, which involves the oxidative decarboxylation of isocitrate, forming ketoglutarate and CO2 in a two-step reaction. The first step involves the oxidation of isocitrate to the intermediate oxalosuccinate, while the second step involves the production of ketoglutarate. During this process, either NADH or NADPH is produced along with CO2. Recently, an inactivating mutation of IDH1 has been implicated in glioblastoma. IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway.
Conjugate DyLight 755
Clone IDH1/1152
Target Species Human
Applications FC, IHC-P, WB, IHC
Supplier Novus Biologicals
Catalog # Sign in to view product details, citations, and spectra
Size
Price
Antigen
Host
Isotype
About IDH1
Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which utilizes NAD(+) as the electron acceptor and the other NADP(+). Five isocitrate dehydrogenases have been reported: three NAD(+)-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP(+)-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP(+)-dependent isozyme is a homodimer. The protein encoded by this gene is the NADP(+)-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2, 4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production. Alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2013]
About DyLight 755
DyLight™ 755 has an excitation peak of 754 nm and an emission peak of 776 nm and is spectrally similar to Alexa Fluor™ 750. DyLight™ 755 is most commonly used in fluorescence micrscopy.
Experiment Design Tools
Panel Builders

Looking to design a Microscopy or Flow Cytometry experiment?

Validation References
Additional
Sources
Reviews & Ratings
Looking for more options?

667 IDH1 antibodies from over 28 suppliers available with over 55 conjugates.

Supplier Page
 Compare