IRF-4 / DyLight 488 /
Product Details
Description | IRF4 Antibody [DyLight 488] | |
---|---|---|
Conjugate | DyLight 488 | |
Clone | ||
Target Species | Human, Mouse, Rat | |
Applications | ELISA, ICC, IF, WB | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About IRF-4
The protein encoded by this gene belongs to the IRF (interferon regulatory factor) family of transcription factors, characterized by an unique tryptophan pentad repeat DNA-binding domain. The IRFs are important in the regulation of interferons in response to infection by virus, and in the regulation of interferon-inducible genes. This family member is lymphocyte specific and negatively regulates Toll-like-receptor (TLR) signaling that is central to the activation of innate and adaptive immune systems. A chromosomal translocation involving this gene and the IgH locus, t(6;14)(p25;q32), may be a cause of multiple myeloma. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2010]
The protein encoded by this gene belongs to the IRF (interferon regulatory factor) family of transcription factors, characterized by an unique tryptophan pentad repeat DNA-binding domain. The IRFs are important in the regulation of interferons in response to infection by virus, and in the regulation of interferon-inducible genes. This family member is lymphocyte specific and negatively regulates Toll-like-receptor (TLR) signaling that is central to the activation of innate and adaptive immune systems. A chromosomal translocation involving this gene and the IgH locus, t(6;14)(p25;q32), may be a cause of multiple myeloma. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2010]
About DyLight 488
DyLight™ 488 has an excitation peak at 493 nm and an emission peak at 518 nm and is spectrally similar to Alexa Fluor™ 488, fluorescein and FITC. DyLight™ 488 is most commonly used in flow cytometery, and fluorescence microscopy applications.
DyLight™ 488 has an excitation peak at 493 nm and an emission peak at 518 nm and is spectrally similar to Alexa Fluor™ 488, fluorescein and FITC. DyLight™ 488 is most commonly used in flow cytometery, and fluorescence microscopy applications.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
361 IRF-4 antibodies from over 24 suppliers available with over 42 conjugates.