ISCU / FITC / 3B8-1C4
Product Details
Description | NIFUN (Iron-Sulfur Cluster Assembly Enzyme ISCU, Mitochondrial, NifU-like N-Terminal Domain-Containing Protein, NifU-like Protein, ISCU) (FITC) Mab 3B8-1C4 | |
---|---|---|
Conjugate | FITC | |
Clone | 3B8-1C4 | |
Target Species | Human | |
Applications | ELISA, IF, WB | |
Supplier | US Biological | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About ISCU
This gene encodes a component of the iron-sulfur (Fe-S) cluster scaffold. Fe-S clusters are cofactors that play a role in the function of a diverse set of enzymes, including those that regulate metabolism, iron homeostasis, and oxidative stress response. Alternative splicing results in transcript variants encoding different protein isoforms that localize either to the cytosol or to the mitochondrion. Mutations in this gene have been found in patients with hereditary myopathy with lactic acidosis. A disease-associated mutation in an intron may activate a cryptic splice site, resulting in the production of a splice variant encoding a putatively non-functional protein. A pseudogene of this gene is present on chromosome 1. [provided by RefSeq, Feb 2016]
This gene encodes a component of the iron-sulfur (Fe-S) cluster scaffold. Fe-S clusters are cofactors that play a role in the function of a diverse set of enzymes, including those that regulate metabolism, iron homeostasis, and oxidative stress response. Alternative splicing results in transcript variants encoding different protein isoforms that localize either to the cytosol or to the mitochondrion. Mutations in this gene have been found in patients with hereditary myopathy with lactic acidosis. A disease-associated mutation in an intron may activate a cryptic splice site, resulting in the production of a splice variant encoding a putatively non-functional protein. A pseudogene of this gene is present on chromosome 1. [provided by RefSeq, Feb 2016]
About FITC
Fluorescein isothiocyanate (FITC) has an excitation peak at 495 nm and an emission peak at 519 nm. The name FITC is a misnomer in that the isothiocyanate is a reactive form of this dye. Once FITC is conjugated to an antibody, it is simply Fluorescein conjugated. FITC is one of the most widely used dyes for fluorescent applications, therefore most instruments come standard with a 488 nm laser and FITC filter set up. FITC is commonly conjugated to secondary antibodies and used in applications such as flow cytometry, immunocytochemistry, and immunohistochemistry. FITC is relatively dim, sensitive to photobleaching and it is susceptible to changes is pH. There are better performing alternatives to FITC, like Vio®Bright 515, Alexa Fluor™ 488, iFluor® 488, CF®488A and DY-488. FITC is a long-time generic dye with no sole manufacturer or trademark.
Fluorescein isothiocyanate (FITC) has an excitation peak at 495 nm and an emission peak at 519 nm. The name FITC is a misnomer in that the isothiocyanate is a reactive form of this dye. Once FITC is conjugated to an antibody, it is simply Fluorescein conjugated. FITC is one of the most widely used dyes for fluorescent applications, therefore most instruments come standard with a 488 nm laser and FITC filter set up. FITC is commonly conjugated to secondary antibodies and used in applications such as flow cytometry, immunocytochemistry, and immunohistochemistry. FITC is relatively dim, sensitive to photobleaching and it is susceptible to changes is pH. There are better performing alternatives to FITC, like Vio®Bright 515, Alexa Fluor™ 488, iFluor® 488, CF®488A and DY-488. FITC is a long-time generic dye with no sole manufacturer or trademark.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
173 ISCU antibodies from over 14 suppliers available with over 30 conjugates.
Compare