Thymidylate Synthase / Janelia Fluor 646 / TYMS/1884
Product Details
Description | Thymidylate Synthase Antibody (TYMS/1884) [Janelia Fluor 646] | |
---|---|---|
Conjugate | Janelia Fluor 646 | |
Clone | TYMS/1884 | |
Target Species | Human | |
Applications | FC, ICC, IF, IHC | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About Thymidylate Synthase
Thymidylate synthase catalyzes the methylation of deoxyuridylate to deoxythymidylate using, 10-methylenetetrahydrofolate (methylene-THF) as a cofactor. This function maintains the dTMP (thymidine-5-prime monophosphate) pool critical for DNA replication and repair. The enzyme has been of interest as a target for cancer chemotherapeutic agents. It is considered to be the primary site of action for 5-fluorouracil, 5-fluoro-2-prime-deoxyuridine, and some folate analogs. Expression of this gene and that of a naturally occurring antisense transcript, mitochondrial enolase superfamily member 1 (GeneID:55556), vary inversely when cell-growth progresses from late-log to plateau phase. Polymorphisms in this gene may be associated with etiology of neoplasia, including breast cancer, and response to chemotherapy. [provided by RefSeq, Aug 2017]
Thymidylate synthase catalyzes the methylation of deoxyuridylate to deoxythymidylate using, 10-methylenetetrahydrofolate (methylene-THF) as a cofactor. This function maintains the dTMP (thymidine-5-prime monophosphate) pool critical for DNA replication and repair. The enzyme has been of interest as a target for cancer chemotherapeutic agents. It is considered to be the primary site of action for 5-fluorouracil, 5-fluoro-2-prime-deoxyuridine, and some folate analogs. Expression of this gene and that of a naturally occurring antisense transcript, mitochondrial enolase superfamily member 1 (GeneID:55556), vary inversely when cell-growth progresses from late-log to plateau phase. Polymorphisms in this gene may be associated with etiology of neoplasia, including breast cancer, and response to chemotherapy. [provided by RefSeq, Aug 2017]
About Janelia Fluor 646
Janelia Fluor® 646 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 646 has an excitation peak at 646 nm and an emission peak at 664 nm.
Janelia Fluor® 646 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 646 has an excitation peak at 646 nm and an emission peak at 664 nm.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
782 Thymidylate Synthase antibodies from over 25 suppliers available with over 51 conjugates.