Serpin A7 / DyLight 488 /
Product Details
Description | Rabbit Serpin A7/TBG antibody [DyLight 488] reacts with Human | |
---|---|---|
Conjugate | DyLight 488 | |
Clone | ||
Target Species | Human | |
Applications | ELISA | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About Serpin A7
There are three proteins including thyroxine-binding globulin (TBG), transthyretin and albumin responsible for carrying the thyroid hormones thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in the bloodstream. This gene encodes the major thyroid hormone transport protein, TBG, in serum. It belongs to the serpin family in genomics, but the protein has no inhibitory function like many other members of the serpin family. Mutations in this gene result in TGB deficiency, which has been classified as partial deficiency, complete deficiency, and excess, based on the level of serum TBG. Alternatively spliced transcript variants encoding different isoforms have been found, but the full-length nature of these variants has not been determined.[provided by RefSeq, Jun 2012]
There are three proteins including thyroxine-binding globulin (TBG), transthyretin and albumin responsible for carrying the thyroid hormones thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in the bloodstream. This gene encodes the major thyroid hormone transport protein, TBG, in serum. It belongs to the serpin family in genomics, but the protein has no inhibitory function like many other members of the serpin family. Mutations in this gene result in TGB deficiency, which has been classified as partial deficiency, complete deficiency, and excess, based on the level of serum TBG. Alternatively spliced transcript variants encoding different isoforms have been found, but the full-length nature of these variants has not been determined.[provided by RefSeq, Jun 2012]
About DyLight 488
DyLight™ 488 has an excitation peak at 493 nm and an emission peak at 518 nm and is spectrally similar to Alexa Fluor™ 488, fluorescein and FITC. DyLight™ 488 is most commonly used in flow cytometery, and fluorescence microscopy applications.
DyLight™ 488 has an excitation peak at 493 nm and an emission peak at 518 nm and is spectrally similar to Alexa Fluor™ 488, fluorescein and FITC. DyLight™ 488 is most commonly used in flow cytometery, and fluorescence microscopy applications.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
263 Serpin A7 antibodies from over 15 suppliers available with over 32 conjugates.