L1CAM / Janelia Fluor 646 / 14
Product Details
Description | Rabbit L1CAM antibody reacts with Human [Janelia Fluor 646] | |
---|---|---|
Conjugate | Janelia Fluor 646 | |
Clone | 14 | |
Target Species | Human | |
Applications | FC, ICC, IF, IHC-P, IHC | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About L1CAM
The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin supergene family. The ectodomain, consisting of several immunoglobulin-like domains and fibronectin-like repeats (type III), is linked via a single transmembrane sequence to a conserved cytoplasmic domain. This cell adhesion molecule plays an important role in nervous system development, including neuronal migration and differentiation. Mutations in the gene cause X-linked neurological syndromes known as CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia and hydrocephalus). Alternative splicing of this gene results in multiple transcript variants, some of which include an alternate exon that is considered to be specific to neurons. [provided by RefSeq, May 2013]
The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin supergene family. The ectodomain, consisting of several immunoglobulin-like domains and fibronectin-like repeats (type III), is linked via a single transmembrane sequence to a conserved cytoplasmic domain. This cell adhesion molecule plays an important role in nervous system development, including neuronal migration and differentiation. Mutations in the gene cause X-linked neurological syndromes known as CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia and hydrocephalus). Alternative splicing of this gene results in multiple transcript variants, some of which include an alternate exon that is considered to be specific to neurons. [provided by RefSeq, May 2013]
About Janelia Fluor 646
Janelia Fluor® 646 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 646 has an excitation peak at 646 nm and an emission peak at 664 nm.
Janelia Fluor® 646 was developed at the Janelia Campus of the Howard Hughes Medical Institute but is commercialized by other vendors. The Janelia Fluor®s family is unique in that the fluorophores are cell-permeable and are available in photoactivatable forms. These fluorophores were developed for super-resolution microscopy (STED, PALM and STORM) and live-cell microscopy in the HaloTag and SNAP-tag versions. Janelia Fluor® 646 has an excitation peak at 646 nm and an emission peak at 664 nm.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
604 L1CAM antibodies from over 25 suppliers available with over 44 conjugates.