c-Met / Alexa Fluor 594 / OTI1E6
Product Details
Description | Mouse HGFR/c-MET antibody reacts with Human [Alexa Fluor 594] | |
---|---|---|
Conjugate | Alexa Fluor 594 | |
Clone | OTI1E6 | |
Target Species | Human | |
Applications | WB, IHC | |
Supplier | Novus Biologicals | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About c-Met
This gene encodes a member of the receptor tyrosine kinase family of proteins and the product of the proto-oncogene MET. The encoded preproprotein is proteolytically processed to generate alpha and beta subunits that are linked via disulfide bonds to form the mature receptor. Further processing of the beta subunit results in the formation of the M10 peptide, which has been shown to reduce lung fibrosis. Binding of its ligand, hepatocyte growth factor, induces dimerization and activation of the receptor, which plays a role in cellular survival, embryogenesis, and cellular migration and invasion. Mutations in this gene are associated with papillary renal cell carcinoma, hepatocellular carcinoma, and various head and neck cancers. Amplification and overexpression of this gene are also associated with multiple human cancers. [provided by RefSeq, May 2016]
This gene encodes a member of the receptor tyrosine kinase family of proteins and the product of the proto-oncogene MET. The encoded preproprotein is proteolytically processed to generate alpha and beta subunits that are linked via disulfide bonds to form the mature receptor. Further processing of the beta subunit results in the formation of the M10 peptide, which has been shown to reduce lung fibrosis. Binding of its ligand, hepatocyte growth factor, induces dimerization and activation of the receptor, which plays a role in cellular survival, embryogenesis, and cellular migration and invasion. Mutations in this gene are associated with papillary renal cell carcinoma, hepatocellular carcinoma, and various head and neck cancers. Amplification and overexpression of this gene are also associated with multiple human cancers. [provided by RefSeq, May 2016]
About Alexa Fluor 594
Alexa Fluor™ 594 (AF594, Alexa 594) has an excitation peak at 590 nm and an emission peak at 617 nm, and is spectrally similar to Texas Red (ThermoFisher Scientific), DyLight™ 594 (ThermoFisher Scientific), iFluor® 594 (ATT Bioquest) and iFluor® 610 (ATT Bioquest), CF®594 (Biotium), and ATTO 594 (ATTO-TEC). Alexa 594 is commonly used for flow cytometry,fluorescence microscopy and super-resolution microscopy. It is very bright, photostable, and pH insensitive.
Alexa Fluor™ 594 (AF594, Alexa 594) has an excitation peak at 590 nm and an emission peak at 617 nm, and is spectrally similar to Texas Red (ThermoFisher Scientific), DyLight™ 594 (ThermoFisher Scientific), iFluor® 594 (ATT Bioquest) and iFluor® 610 (ATT Bioquest), CF®594 (Biotium), and ATTO 594 (ATTO-TEC). Alexa 594 is commonly used for flow cytometry,fluorescence microscopy and super-resolution microscopy. It is very bright, photostable, and pH insensitive.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
1080 c-Met antibodies from over 23 suppliers available with over 60 conjugates.