Myosin heavy chain 1 (Fast Skeletal) / FITC /

Product Details
Description MYH1 Antibody (aa1379-1642, FITC)
Conjugate FITC
Clone
Target Species Mouse
Applications
Supplier LifeSpan
Catalog # Sign in to view product details, citations, and spectra
Size
Price
Antigen
Host
Isotype
About Myosin heavy chain 1 (Fast Skeletal)
Myosin is a major contractile protein which converts chemical energy into mechanical energy through the hydrolysis of ATP. Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. Myosin heavy chains are encoded by a multigene family. In mammals at least 10 different myosin heavy chain (MYH) isoforms have been described from striated, smooth, and nonmuscle cells. These isoforms show expression that is spatially and temporally regulated during development. [provided by RefSeq, Jul 2008]
About FITC
Fluorescein isothiocyanate (FITC) has an excitation peak at 495 nm and an emission peak at 519 nm. The name FITC is a misnomer in that the isothiocyanate is a reactive form of this dye. Once FITC is conjugated to an antibody, it is simply Fluorescein conjugated. FITC is one of the most widely used dyes for fluorescent applications, therefore most instruments come standard with a 488 nm laser and FITC filter set up. FITC is commonly conjugated to secondary antibodies and used in applications such as flow cytometry, immunocytochemistry, and immunohistochemistry. FITC is relatively dim, sensitive to photobleaching and it is susceptible to changes is pH. There are better performing alternatives to FITC, like Vio®Bright 515, Alexa Fluor™ 488, iFluor® 488, CF®488A and DY-488. FITC is a long-time generic dye with no sole manufacturer or trademark.
Experiment Design Tools
Panel Builders

Looking to design a Microscopy or Flow Cytometry experiment?

Validation References
Additional
Sources
Reviews & Ratings
Looking for more options?

183 Myosin heavy chain 1 (Fast Skeletal) antibodies from over 15 suppliers available with over 35 conjugates.

 Compare