TLR4 / PE-Cy7 / HTA125
Product Details
Description | CD284 (TLR4) Monoclonal Antibody (HTA125), PE-Cyanine7, eBioscience™ | |
---|---|---|
Conjugate | PE-Cy7 | |
Clone | HTA125 | |
Target Species | Human | |
Applications | FC | |
Supplier | Thermo Fisher Scientific | |
Catalog # | Sign in to view product details, citations, and spectra | |
Size | ||
Price | ||
Antigen | ||
Host | ||
Isotype |
About TLR4
The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. In silico studies have found a particularly strong binding of surface TLR4 with the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease-2019 (COVID-19). This receptor has also been implicated in signal transduction events induced by lipopolysaccharide (LPS) found in most gram-negative bacteria. Mutations in this gene have been associated with differences in LPS responsiveness, and with susceptibility to age-related macular degeneration. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2020]
The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. In silico studies have found a particularly strong binding of surface TLR4 with the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease-2019 (COVID-19). This receptor has also been implicated in signal transduction events induced by lipopolysaccharide (LPS) found in most gram-negative bacteria. Mutations in this gene have been associated with differences in LPS responsiveness, and with susceptibility to age-related macular degeneration. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2020]
About PE-Cy7
PE-Cyanine®7 (PE-Cy7, RPE-Cy7) is a far red-emitting tandem fluorophore that combines phycoerythrin (PE) and Cy7. The donor molecule, PE can be excited by the 488-nm blue, 532-nm green, or 561-nm yellow-green laser and and transfers energy to the acceptor molecule, Cy7, which emitts light that can be captured with a 780/60 nm bandpass filter. PE-CY7 has an excitation peak at 565 nm and an emission peak at 778 nm, and is a suitable alternative to PE-Vio®770 and PE-Fire™ 780.
PE-Cyanine®7 (PE-Cy7, RPE-Cy7) is a far red-emitting tandem fluorophore that combines phycoerythrin (PE) and Cy7. The donor molecule, PE can be excited by the 488-nm blue, 532-nm green, or 561-nm yellow-green laser and and transfers energy to the acceptor molecule, Cy7, which emitts light that can be captured with a 780/60 nm bandpass filter. PE-CY7 has an excitation peak at 565 nm and an emission peak at 778 nm, and is a suitable alternative to PE-Vio®770 and PE-Fire™ 780.
Experiment Design Tools
Panel Builders
Looking to design a Microscopy or Flow Cytometry experiment?
Validation References
Reviews & Ratings
Reviews |
---|
Looking for more options?
1320 TLR4 antibodies from over 36 suppliers available with over 76 conjugates.